Abstract
Landscapes are sculpted by a complex response of surface processes to external forcings, such as climate and tectonics. Several major stream captures have been documented on the Southeast Tibetan Plateau, leading to the hypothesis that the region experiences exceptionally high rates of drainage reorganization driven by horizontal shortening and propagating uplift. Here we determine the prevalence, intensity, and spatial patterns of ongoing drainage reorganization on the Southeast Tibetan Plateau and evaluate the relative time scales of this transience by comparing drainage divide asymmetry for four geomorphic metrics that operate at different spatial and temporal scales. Specifically, we evaluate drainage divide asymmetry in catchment-restricted topographic relief, hillslope gradient, normalized channel steepness (ksn), and χ. ksn and χ are both precipitation-corrected to account for the strong precipitation gradient across the region. We calculate the migration direction and Scherler & Schwanghart (2020)’s divide asymmetry index (DAI) in each metric for drainage divides across the entire region in order to analyze how well the asymmetry in these metrics agree along divides and where consistent divide movement is inferred. We find a high incidence of strongly asymmetric divides in all metrics across the entire Southeast Tibetan Plateau. While the magnitude of asymmetry varies significantly between metrics, a majority of divides agree on divide migration direction across all metrics. Divides with higher magnitudes of asymmetry are more likely to agree on migration direction across multiple metrics. While χ agrees least often with the other metrics on migration direction, it agrees on direction >90% of the time when low DAI divides are excluded. We also establish that disagreement in predicted divide migration directions between χ and the other geomorphic metrics can be interpreted as evidence of localized variations in tectonic uplift or erodibility, glacial alteration, or recent lateral stream capture. Our work confirms the high incidence of drainage reorganization across the Southeast Tibetan Plateau and highlights both transient and stable areas in the landscape with unprecedented resolution. In addition, we propose how to combine geomorphic metrics to ascertain how drainage divides migrate across different timescales and identify local deviations in tectonic uplift and erodibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.