Abstract

The vertical K-sat of a clay layer, occurring between 30 and 60 cm below the soil surface, was measured in situ in early spring at thirteen sites, using large soil columns. Gypsum was used to form a barrier around the column and K-sat values were measured with an infiltrometer in columns that were first attached and then detached from the subsoil. This procedure allows an estimate of the occurrence of large continuous pores, such as vertical worm channels. Highest values were found in tile-drained grassland, followed by grassland with surface drainage only, and by tile-drained arable land. Relatively low K-sat for the silty subsoil, rather than the (high) vertical K-sat for the clay layer, is considered to be responsible for high groundwater tables in the wet season.Undisturbed, large columns were taken to the laboratory and saturated for a period of three months to simulate prolonged swelling after a very wet season, and to measure chloride-breakthrough curves, for characterizing soil-pore continuity. The clay layer, sampled in the surface-drained grassland, showed no significant reduction of K-sat after prolonged swelling, but the one for arable land was reduced. Moreover, flow in the latter occurred through only a few relatively large, continuous pores, whereas a more heterogeneous pore system was found for the column from grassland. The already high K-sat of the clay layer in surface-drained grassland increased as a result of tile drainage. Compaction of the clay layer in tile-drained arable land reduced K-sat well below the level found in surface-drained grassland.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call