Abstract

A small bandgap and light carrier effective mass (m0) lead to obvious ambipolar transport behavior in carbon nanotube (CNT) field-effect transistors (FETs), including a high off-state current and severe degradation of the subthreshold swing (SS) with increasing drain bias voltage. We demonstrate a drain-engineered method to cope with this common problem in CNT-film FETs with a sub-µm channel length, i.e., suppressing the ambipolar behavior while maintaining high on-state performance by adopting a feedback gate (FBG) structure to extend the drain region from the CNT/metal contact to the proximate CNT channels to suppress the tunneling current. Sub-400-nm-channel-length FETs with a FBG structure statistically present a high on/off ratio of up to 104 and a sub-200 mV/dec SS under a high drain bias of up to −2 V while maintaining a high on-state current of 0.2 mA/µm or a peak transconductance of 0.2 mS/µm. By lowering the supply voltage to 1.5 V, FBG CNT-film FETs can meet the requirement of standard-performance ultra large scale integrated circuits (ULSICs). Therefore, the introduction of the drain engineering structure enables applications of CNT-film-based FETs in ULSICs and could also be widely extended to other small-bandgap semiconductor-based FETs for an improvement in their off-state property.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call