Abstract

Abstract:In the tails of dromaeosaurid dinosaurs and rhamphorhynchid pterosaurs, elongate osteological rods extend anteriorly from the chevrons and the prezygapophyses. These caudal rods are positioned in parallel and are stacked dorsoventrally. The fully articulated and three‐dimensionally preserved caudal series of some dromaeosaurid specimens show that individually these caudal rods were flexible, not rigid as previously thought. However, examination of the arrangement of the caudal rods in cross‐section indicates that the combined effect of multiple caudal rods did provide substantial rigidity in the dorsoventral, but not in the lateral, plane. The results of digital muscle reconstructions confirm that dromaeosaurids and rhamphorhynchids also shared greatly reduced caudofemoral muscles in the anterior tail region. The striking similarities between the tails of dromaeosaurids and rhamphorhynchids suggest that both evolved under similar behavioral and biomechanical pressures. Combined with recent discoveries of primitive deinonychosaurs that phylogenetically bracket the evolution of dromaeosaurid caudal rods between two arboreal gliding/flying forms, these results are evidence that the unique caudal morphologies of dromaeosaurids and rhamphorhynchids were both adaptations for an aerial lifestyle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call