Abstract
In this study an improved version of the Discrete RVE Automation and Generation Framework, also called DRAGen, is presented. The Framework incorporates a generator for Representative Volume Elements (RVEs). Several complex microstructure features, extracted from real microstructures, have been added to the generator, to enable it to generate RVEs with realistic microstructures. DRAGen is now capable of reading trained neural networks as well as .csv-files as input data for the microstructure generation. Furthermore, features such as pores and inclusions, martensite bands, hierarchical substructures, and crystallographic textures can be reconstructed in the RVEs. Besides the features, the functionality for different solvers was introduced. Therefore, the code was extended by modules for the generation of Finite Element (FE) and spectral solver input files. DRAGen now has the ability to create models for three powerful multiphysics frameworks used in the community: DAMASK, Abaqus and MOOSE. The evaluation of the features, as well as the simulations performed on sample models, show that the new version of DRAGen is a very powerful tool with flexible applicability for scientists in the ICME community. Also, due to the modular architecture of the project, the code can easily be expanded with features of interest. Therefore, it delivers a variety of functions and possible outputs, which offers researchers a broad spectrum of microstructures that can be used in microstructure studies or microstructure design developments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.