Abstract

Operating satellites at altitudes in Very Low Earth Orbit (VLEO) has many advantages. However, due to the higher atmospheric density of this region, satellites encounter significantly higher atmospheric drag. Depending on the mission, this may require a propulsive system to maintain the orbit which costs both fuel mass and volume. It is therefore desirable to reduce the drag in order to either reduce these costs or to extend the operational life. In this paper a series of viable aeroshell profiles are identified for satellites operating in VLEO using a Radial Basis Function-based surrogate model with data generated using both Panel Methods and Discrete Simulation Monte Carlo simulations. It was demonstrated that a maximum drag reduction of between 21% and 35% was achievable for the profiles when optimising a bi-conic profile for minimum drag based on Discreet Simulation Monte Carlo simulations with an energy accommodation coefficient of 0.95. Accounting for the loss of internal volume and assuming the reduction in fuel mass results in an equally proportioned reduction in fuel system volume it was observed that only a 13% to 27% reduction was achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.