Abstract
The most effective approach to drag reduction is to concentrate on the components that make up the largest percentage of the overall drag. Small improvements on large quantities can become in fact remarkable aerodynamic improvements. Our experience shows that the use of light material in constructing human-powered airplanes and unmanned-air-vehicles UAVs has a few side effects on the aerodynamic characteristics of their wings. One important side effect is the unwanted deflection on wing shell. It is because of high flexibility and low solidity of the light material, which covers the wing skeleton. The created curvature has direct impact on the separation phenomenon occurred over the wing in low Reynolds number flows. In this work, we numerically simulate the flow over a UAV wing with and without considering the generated deflection on its shell. It is shown that the curvature on the wing surface between two supporting airfoil frames causes total drag coefficient reduction. Indeed, this drag reduction is automatically achieved without benefiting from additional drag-reduction devices and/or drag-reduction considerations. The current investigation has been conducted on a UAV wing with fxmp-160 airfoil section. This airfoil normally provides high lift coefficient in low Reynolds flows because of having suitable camber. The drag of a wing with this airfoil section can be reduced by the proper usage of low weight material as its wing shell providing that the wing shell deflects between its supporting frames during stretching the shell in manufacturing stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.