Abstract

Flow in a horizontal channel exposed to external heating which results in sinusoidal temperature variations along the upper and lower walls with a phase shift between them has been studied using a combination of analytical and numerical methods. The most intense convection is observed when the upper and lower hot spots are located above each other. It has been demonstrated that the heating results in a significant reduction of the pressure gradient required to drive the flow when compared to a similar flow in an isothermal channel. The drag reduction is associated with the formation of separation bubbles which insulate the stream from direct contact with the bounding walls. The fluid inside of the bubbles rotates due to horizontal density gradients, which further reduces the required pressure gradient. The magnitude of the drag reduction depends on the phase shift between the heating patterns and can increase by up to threefold when compared to the drag reduction which can be achieved by heating only one wall. A detailed analysis of the associated heat fluxes has been presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call