Abstract

The aerodynamic mechanisms for the reduction of drag for a D-shape cylinder, wherein a front face of a circular cylinder is cut off, and an I-shape cylinder, wherein front and rear faces are cut off, are investigated. For the D-shape and I-shape cylinders with a cutting angle of 50-53° and for Reynolds number Re > 2.3 x 10 4 , the shear layer separated from the front edge reattaches on the circular arc of the cylinder, and a transition in the boundary layer as well as turbulent separation occur. As a result, the wake width decreases and the vortex formation region goes downstream. The Strouhal number increases beyond 0.28, the base pressure coefficient rises, and the drag coefficient of the cylinders decreases to half the value for a circular cylinder. The conditions of the above phenomena are clarified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.