Abstract

A drag prediction method based on thrust drag bookkeeping (TDB) is introduced for civil jet propulsion/airframe integration performance analysis. The method is derived from the control volume theory of a powered-on nacelle. Key problem of the TDB is identified to be accurate prediction of velocity coefficient of the powered-on nacelle. Accuracy of CFD solver is validated by test cases of the first AIAA Propulsion Aerodynamics Workshop. Then the TDB method is applied to thrust and drag decomposing of a realistic aircraft. A linear relation between the computations assumed free stream Mach number and the velocity coefficient result is revealed. The thrust losses caused by nozzle internal drag and pylon scrubbing are obtained by the isolated nacelle and mapped on to the in-flight whole configuration analysis. Effects of the powered-on condition are investigated by comparing through-flow configuration with powered-on configuration. The variance on aerodynamic coefficients and pressure distribution is numerically studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call