Abstract

Understanding the aerodynamic forces on particles resting on a surface is important for studies of surface contamination, non-contact sampling, and environmental and health assessments. Though the aerodynamic forces acting on a spherical particle are well studied, in many real-world applications, the particles are non-spherical, and there are currently no established relations for forces on non-spherical particles resting on a surface. We developed new relations for the aerodynamic forces on prolate-spheroidal particles attached to a surface in a linear shear flow using direct numerical simulations. The reduced-order model predicts drag, lift, and torque coefficients as a function of the particle aspect ratio, flow incidence angle, and Reynolds number. The predictive model agrees with the direct numerical simulations (DNS) results for the drag and lift coefficients within 0.3% and 3%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.