Abstract

The paper concerns Drag-Free and Attitude Control of the European satellite Gravity field and steady-state Ocean Circulation Explorer (GOCE) during the science phase. Design has followed Embedded Model Control, where a spacecraft/environment discrete-time model becomes the real-time control core and is interfaced to actuators and sensors via tuneable feedback laws. Drag-free control implies cancelling non-gravitational forces and all torques, leaving the satellite to free fall subject only to gravity. In addition, for reasons of science, the spacecraft must be carefully aligned to the local orbital frame, retrieved from range and rate of a Global Positioning System receiver. Accurate drag-free and attitude control requires proportional and low-noise thrusting, which in turn raises the problem of propellant saving. Six-axis drag-free control is driven by accurate acceleration measurements provided by the mission payload. Their angular components must be combined with the star-tracker attitude so as to compensate accelerometer drift. Simulated results are presented and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.