Abstract

The net axial force on a non-fuelled quasi-axisymmetric scramjet model designed for operation at Mach 6 was measured in the T4 Stalker tube at The University of Queensland using a single-component stress wave force balance. The design used was a variant of a model that was tested previously at Mach 6. The new model was equipped with a modified thrust nozzle that was designed to improve the performance of the nozzle. Tests were performed to measure the drag force on the model for Mach 6, Mach 8 and Mach 10 shock tunnel nozzles for a range of flow conditions. The nozzle-supply enthalpy was varied from 3 to 10 MJ/kg and the nozzle-supply pressure from 35 to 45 MPa. For the test model, the drag coefficient increased with increasing nozzle-supply enthalpy. The test results are compared with a force prediction method based on simple hypersonic theories and three-dimensional CFD. The test results are in good agreement with the predictions over the wide range of conditions tested. The re-designed model has a more efficient nozzle but this comes at the expense of increased drag associated with the modifications required for the cowl. The results indicate that this type of vehicle design is not likely to be suitable for flight above Mach 8.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call