Abstract

A surface grooved with microscopic riblets aligned parallel to the flow is an effective means to reduce the turbulent skin friction up to 10% compared to a smooth surface. The maximum drag reduction is found for a dimensionless rib spacing s+ in the range of 15–17. For s+ < 10, a linear behaviour of the drag reduction curve is predicted by viscous theory. This linear slope of the drag reduction curve is in contradiction to Schlichting’s postulation of a hydraulically smooth behaviour of small-scale roughness in a turbulent flow. This regime of evanescent dimensionless rib spacings is investigated experimentally by direct wall shear stress measurements in a fully developed channel flow. Additionally, a numerical calculation of the viscous flow over riblets was carried out to predict the drag reducing behaviour. The experimental results show a linear drag reducing behaviour down to s+ = 0.3, which is in good agreement with the numerical results of the viscous simulation. The postulation of Schlichting’s hydraulically smooth regime of a rough surface was not confirmed, neither for a riblet surface nor for a surface geometry with grooves oriented perpendicular to the flow. In the latter case, the drag increases as a quadratic function of the roughness height.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.