Abstract

Residual stresses can have important consequences for the load carrying capacity and safety of engineering components. Neutron diffraction is a non-destructive method for determining residual stresses in crystalline materials. It is a relatively new technique and no standard is currently available for making these measurements. This paper gives the background to research that has been carried out to develop a standard. It outlines the main findings and indicates the precautions that are required to achieve accurate positioning and alignment of specimens (and components) in a neutron beam and the analysis required to obtain reliable results. It also shows that special attention is needed in dealing with near-surface measurements because of surface aberration. It is demonstrated that, provided the recommended procedures are followed, a positional tolerance of ±0.1mm can be achieved with an accuracy in strain of ±10−4 to give a resolution in residual stress of ±7 to 20 MPa in most materials of practical interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.