Abstract
The emergence and spread of hypermucoviscous KPC-2-producing Klebsiella pneumoniae strains belonging to the sequence type 25 (ST25) clone was reported recently in Northwest Argentina as a leading cause of nosocomial infections. The aim of this work was to perform whole-genome sequencing (WGS) to analyse antimicrobial resistance genes (ARGs), virulence factors and colonisation-associated genes in two carbapenem-resistant KPC-2-producing ST25 K. pneumoniae strains isolated from hospitalised patients. Classical microbiological methods were applied to recover K. pneumoniae LABACER 01 from a bone sample and LABACER 27 from the respiratory tract of two hospitalised patients. Bacteria were identified by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF). WGS was performed using an Illumina MiSeq platform. Genome annotation and analysis were performed with available databases and bioinformatic tools. Genomic analysis revealed a genome of 5 598 020 bp with 19 further characterised ARGs in strain LABACER 01, and a genome of 5 622 382 bp with 20 ARGs in strain LABACER 27. Bioinformatics analysis also predicted genomic regions associated with virulence factors and mucosal tissue colonisation. This study reports the genomic analysis of K. pneumoniae LABACER 01 and LABACER 27, two hypermucoviscous carbapenem-resistant ST25 strains, which expands our knowledge on the antibiotic resistance, pathogenic mechanisms and biology of ST25 clones recently emerging in Argentina.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.