Abstract
The aim of this study was to report the draft genome sequence of the bacteriocinogenic strain Enterococcus faecium E86. Bacteriocins are prokaryotic peptides or proteins with antimicrobial activity. The genome information may contribute to the identification of enterocins produced by this strain that exhibit inhibitory activity against the foodborne pathogen Listeria monocytogenes and vancomycin-resistant enterococci (VRE) involved in human infections, among other bacterial genera and species. An Illumina MiSeq platform was used for genome sequencing. De novo assembly of 5 735 838 paired-end reads was done using the A5-miseq pipeline, yielding >300-fold average genome coverage. Genome annotation was performed by the RAST server, and mining of the bacteriocinogenic gene clusters was done using the BAGEL3 and antiSMASH v.4 platforms. The total scaffold size was determined to be 2 689 107 bp, approximately 2.7 Mbp, featuring a G + C content of 38.1%. The genome contains 2858 coding sequences and 74 RNA genes. Genome analyses revealed the presence of: 30 genes involved in drug resistance; 2 bacteriocinogenic gene clusters (for enterocin P and enterocin TW21); EntiTW21, a novel bacteriocin immunity protein and a novel multilocus sequence type (ST1500). This work highlights the potential biotechnological application of this strain for the production of enterocin P, a bacteriocin that can be employed in the food industry as a biopreservative against L. monocytogenes and as an alternative to classical antibiotics against VRE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.