Abstract

Shewanella algae is an environmental marine bacterium and an emerging opportunistic human pathogen. Moreover, there are increasing reports of strains showing multidrug resistance, particularly carbapenem-resistant isolates. Although S. algae has been found in bivalve shellfish aquaculture, there is very little genome-wide data on resistance determinants in S. algae from shellfish. The aim of this study was to determine the whole genome sequence of carbapenem-resistant S. algae strain AC isolated from small abalone in Taiwan. Bacterial genomic DNA was sequenced using an Illumina MiSeq platform with 250-bp paired-end reads. De novo genome assembly was performed using Velvet v.1.2.07. The whole genome was annotated and several candidate genes for antimicrobial resistance were identified. The genome size was calculated at 4751156bp, with a mean G+C content of 53.09%. A total of 4164 protein-coding sequences, 7 rRNAs, 85 tRNAs and 5 non-coding RNAs were identified. The genome contains genes associated with resistance to β-lactams, trimethoprim, tetracycline, colistin and quinolones. Multiple efflux pump genes were also detected. Small abalone is a potential source of foodborne drug-resistant S. algae. The genome sequence of carbapenem-resistant S. algae strain AC isolated from small abalone will provide valuable information for further study of the dissemination of resistance genes at the human-animal interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call