Abstract

Serratia is a pathogenic bacterium, commonly associated with neonatal intensive care units, and harbors antibiotic-resistant genes against multiple antibiotics e.g., resistance against penams, aminoglycosides, tetracyclines, cephalosporins, and macrolides. In the long-term contaminated habitat, the bacterial communities carry both antibiotic and metal resistance genes. This draft genome sequencing aimed to explore the alarming level of ARGs in the environment, additionally heavy metal-resistant genes were also explored in the draft genome. Whole-genome sequencing was used to investigate ARGs in Serratia sp. R1. The bacteria were sequenced using Illumina Nova seq sequencer and subjected to genome annotation. The bacterial genome was explored for antibiotic- and metal-resistant genes. Sequencing resulted in 8.4Mb genome and a total of 4411 functional genes were characterized in the draft genome. Genes resistant to Beta-lactams, cephalosporins, macrolides, fluoroquinolones, and tetracycline are present in the draft genome. Multiple metal-resistant genes are also present in the sequenced genome. The genes and proteins providing heavy metal and antibiotic resistance may be used in the bioremediation of environmental antibiotic residues to prevent the spread of antibiotic resistance. The current study can help us to adopt suitable mitigation measures against the multidrug-resistant Serratia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call