Abstract

The development of devices for the Internet of Things (IoT) requires the rapid prototyping of different hardware configurations. In this paper, a modular hardware platform allowing to prototype, test and even implement IoT appliances on low-cost reconfigurable devices is presented. The proposed platform, named Dracon, includes a Z80-clone microprocessor, up to 64 KB of RAM, and 256 inputs/outputs (I/Os). These I/Os can be used to connect additional co-processors within the same FPGA, external co-processors, communications modules, sensors and actuators. Dracon also includes as default peripherals a UART for programming and accessing the microprocessor, a Real Time Clock, and an Interrupt Timer. The use of an 8-bit microprocessor allows the use of the internal memory of the reconfigurable device as program memory, thereby, enabling the implementation of a complete IoT device within a single low-cost chip. Indeed, results using a Spartan 7 FPGA show that it is possible to implement Dracon with only 1515 6-input LUTs while operating at a maximum frequency of 80 MHz, which results in a better trade-off in terms of area and performance than other less powerful and less versatile alternatives in the literature. Moreover, the presented platform allows the development of embedded software applications independently of the selected FPGA device, enabling rapid prototyping and implementations on devices from different manufacturers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.