Abstract
Named Data Networking (NDN) has gained significant attention due to the appearance of several unforeseen design flaws that became evident with new communication scenarios. Among its many features, the two standard NDN forwarding strategies are not adaptive, causing performance degradation in several scenarios. This paper proposes an adaptive forwarding strategy based on deep reinforcement learning with Deep Q-Network, which analyzes the NDN router interface metrics without creating signaling overhead or harming the design principles from the NDN architecture, besides showing significant performance gains compared to the standard strategies.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.