Abstract

This article presents propagation of current sensor error through <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$dq$ </tex-math></inline-formula> -transform and the propagated error effect on high-frequency injection (HFI)-based self-sensing control. Three-phase ac systems use Clark and Park transform with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$a, b, c$ </tex-math></inline-formula> phase inputs for control purpose, i.e., <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$dq$ </tex-math></inline-formula> -transform. When error exists in <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$a, b, c$ </tex-math></inline-formula> inputs, e.g., due to quantization, gain, offset, noise, and others, the error propagates to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula> - and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> -axes and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$dq$ </tex-math></inline-formula> -transform becomes inaccurate; therefore, the control performance degrades. Statistical models based on variance are developed for 2- and 3-channel based <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$dq$ </tex-math></inline-formula> -transform. The error variance models are verified using the error probability density function (PDF) with uniformly distributed random inputs. It is shown that the error propagated in <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$dq$ </tex-math></inline-formula> -axes and self-sensing control performance become rotor position-dependent, following the error variance model with error that exists in current inputs. It is shown that the error variance of 2-channel based <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$dq$ </tex-math></inline-formula> -transform becomes three times higher on average compared to 3-channel based <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$dq$ </tex-math></inline-formula> -transform. It is demonstrated that 3-channel based self-sensing control results in lesser position estimation error compared to 2-channel based self-sensing with a tradeoff in an additional sensor in the machine drive system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call