Abstract
Repair and functional reconstruction of large jawbone defects remain one of the challenges in the field of head and neck surgery. The recent progress in tissue engineering technologies and stem cell biology has significantly promoted the development of regenerative reconstruction of jawbone defects. The multiple trophic activities of extracellular vesicles (EVs) produced by mesenchymal stem cells (MSCs) may play a critical role in their therapeutic effects. Accumulating evidence has shown the promise of dental pulp stem cells (DPSCs) in bone regeneration, but less is known about the regenerative effects of DPSC-EVs on jawbone defects. The purpose of this study is to explore the osteogenic effects of DPSC-EVs on jawbone marrow–derived MSCs (JB-MSCs) in vitro and their osteoinductive effects in a mandibular bone defect model in rats. Our results showed that JB-MSCs could efficiently uptake DPSC-EVs, which in turn significantly promoted the expression of osteogenic genes, such as runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and osteocalcin (OCN), as well as the osteogenic differentiation capability of JB-MSCs. Meanwhile, we found that the pro-osteogenic effect in vitro induced by DPSC-EVs was comparable to that induced by BMP-2 (bone morphogenetic protein 2), currently the only Food and Drug Administration–approved osteoinductive growth factor. In vivo, animals that were locally treated with DPSC-EVs laden with a commercially available collagen membrane exhibited a relatively fast wound closure and increased new bone density at the mandible defects. Our results provide evidence for the osteogenic and osteoinductive effects of DPSC-EVs on jawbone regeneration. Due to the accessibility, rapid proliferation, and osteogenic propensity of DPSCs, DPSC-EVs may represent a safe cell-free therapeutic approach for craniofacial bone regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.