Abstract

Developmental pluripotency-associated 2 (Dppa2) and developmental pluripotency-associated 4 (Dppa4) as positive drivers were helpful for transcriptional regulation of zygotic genome activation (ZGA). Here, we systematically assessed the cooperative interplay of Dppa2 and Dppa4 in regulating cell pluripotency and found that simultaneous overexpression of Dppa2/4 can make induced pluripotent stem cells closer to embryonic stem cells (ESCs). Compared with other pluripotency transcription factors, Dppa2/4 can regulate majorities of signaling pathways by binding on CG-rich region of proximal promoter (0-500bp), of which 85% and 77% signaling pathways were significantly activated by Dppa2 and Dppa4, respectively. Notably, Dppa2/4 also can dramatically trigger the decisive signaling pathways for facilitating ZGA, including Hippo, MAPK and TGF-beta signaling pathways and so on. At last, we found alkaline phosphatase, placental-like 2 (Alppl2) was completely silenced when Dppa2 and 4 single- or double-knockout in ESC, which is consistent with Dux. Moreover, Alppl2 was significantly activated in mouse 2-cell embryos and 4-8 cells stage of human embryos, further predicted that Alppl2 was directly regulated by Dppa2/4 as a ZGA candidate driver to facilitate pre-embryonic development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.