Abstract

The popularity of cyber-physical systems is fueling the rapid growth of location-based services. This poses the risk of location privacy disclosure. Effective privacy preservation is foremost for various mobile applications. Recently, geo-indistinguishability and expected inference error are proposed for limiting location leakages. In this article, we argue that personalization means regionalization for geo-indistinguishability, and we propose a regionalized location obfuscation mechanism called DPIVE with personalized utility sensitivities. This substantially corrects the differential and distortion privacy problem of the PIVE framework proposed by Yu et al. on NDSS 2017. We develop DPIVE with two phases. In Phase I, we determine disjoint sets by partitioning all possible positions such that different locations in the same set share the Protection Location Set (PLS). In Phase II, we construct a probability distribution matrix in which the rows corresponding to the same PLS have their own sensitivity of utility (PLS diameter). Moreover, by designing a QK-means algorithm for more search space in 2-D space, we improve DPIVE with a refined location partition and present fine-grained personalization, enabling each location to have its own privacy level endowed with a customized privacy budget. Experiments with two public datasets demonstrate that our mechanisms have the superior performance, typically on skewed locations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call