Abstract
Density peaks clustering (DPC) algorithm is a succinct and efficient density-based clustering approach to data analysis. It computes the local density and the relative distance for objects to seek cluster centers and form clusters. However, it is difficult to estimate an appropriate local density by a rule of thumb; therefore, the performance of DPC may be poor on real datasets in practice. Thus, this study proposes a novel method for density peaks clustering based on fuzzy semantic cells. Specifically, each object is coarsened into a fuzzy point with the form of the fuzzy semantic cell model. Based on this model, a local density metric is defined and estimated via the principle of justifiable granularity. Our local density estimation can be converted into an optimization problem. In addition, a relative semantic distance is also introduced which concerns the distance between fuzzy semantic cells. The relative semantic distance is more informative for selecting cluster centers in the decision graph. The experimental results show that our method not only exhibits higher performance but also provides a clearer decision graph to select cluster centers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.