Abstract

Doxycycline has been shown to have antibacterial and anti-inflammatory effects and suppresses collagen biosynthesis. The purpose of this study was to evaluate the effects of doxycycline on transforming growth factor (TGF)-β1-induced myofibroblast differentiation and extracellular matrix production in nasal polyp-derived fibroblasts (NPDFs). We also determined the molecular mechanisms of action for doxycycline. NPDFs were isolated from nasal polyps from 8 patients. Doxycycline was used to pretreat TGF-β1-induced NPDFs. Cytotoxicity was evaluated using a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Expression levels of α-smooth muscle actin (SMA) and fibronectin were measured using Western blot, reverse-transcription polymerase chain reaction, and immunofluorescence staining. Total collagen production was analyzed with the Sircol collagen assay, while mitogen-activated protein kinase (MAPK) and NF-κB activation were determined using Western blot analysis. Luciferase assay was used to evaluate the transcriptional activity of NF-κB. Although doxycycline (0 to 40 μg/mL) had no significant cytotoxic effects in TGF-β1-induced NPDFs, it significantly reduced the expression levels of α-SMA, fibronectin, and collagen in TGF-β1-induced NPDFs in a dose-dependent manner. Doxycycline also inhibited the TGF-β1-induced activation of p38, c-Jun NH2 -terminal kinase (JNK), and NF-κB, and its inhibitory effects were similar to those of the specific inhibitors for each. Doxycycline has an inhibitory effect on TGF-β1-induced myofibroblast differentiation and extracellular matrix production via the p38 and JNK/NF-κB signal pathways in NPDFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.