Abstract

Nephronophthisis belongs to a family of recessive cystic kidney diseases and may arise from mutations in multiple genes. In this report we have used a spontaneous mouse mutant of type 3 nephronophthisis to examine whether the doxycycline-inducible synthesis of Timp-2, a natural inhibitor of matrix metalloproteinases, can influence renal cyst growth in transgenic mice. Metalloproteinases may exert either a negative or a positive effect on the progression of cystic kidney disease, and we reasoned that this may be most effectively examined by using a natural inhibitor. Surprisingly, already the application of doxycycline, which also inhibits matrix metalloproteinases, accelerated renal cyst growth and led to increased renal fibrosis, an additional effect of Timp-2 was not detected. The positive effect of doxycycline on kidney size was not due to a non-specific "anabolic effect" but was specific for cystic kidneys because it was not observed in non-cystic kidneys. When looking for potential metabolic changes we noticed that the urine of control animals led to an increase in the calcium response of LLC-PK(1) cells, whereas the urine of doxycycline-treated mice showed the opposite effect and even antagonized the urine of control animals. Further experiments demonstrated that the urine of control animals contained a heat-labile, proteinase K-resistant substance which appears to be responsible for the induction of a calcium response in LLC-PK(1) cells. We conclude that doxycycline accelerates cyst growth possibly by the induction of a substance which lowers the intracellular calcium concentration. Our data also add a note of caution when interpreting phenotypes of animal models based upon the tet system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.