Abstract

The possible involvement of the primary amino group of doxorubicin (DXR) in the cross-linking process of gelatin nanoparticles stabilized by glutaraldehyde was investigated. Nanoparticles were characterized with regard to particle size, drug content, enzymatic degradation and cross-linking degree. The size of nanoparticles was around 100–200 nm and DXR was loaded with an entrapment efficiency of 42%. Upon the study of crosslinking rate, DXR-loaded nanoparticles showed a greater number of free amino groups than the unloaded ones. This should be due to a competition between the amino group of DXR and the amino groups of the gelatin chains during the cross-linking process. Hence, a binding of a drug fraction to the protein matrix via glutaraldehyde was hypothesized and confirmed by the results of a thin-layer chromatography (TLC) analysis. According to the in vitro study only a little fraction of DXR was released as free drug (8%) when the nanoparticles were put in saline solution. The addition of proteolytic enzymes disrupts the matrix structure producing the release of a further 10–15% of the drug loading which was entrapped in the nanoparticle matrix. The remaining part of the drug corresponds to DXR covalently linked to peptide residues produced by nanoparticle digestion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.