Abstract

Nanotechnology is a promising alternative to overcome the limitations of classical chemotherapy. As a novel approach, dendrimer-coated magnetic nanoparticles (DcMNPs) maintain suitable drug delivery system because of their buildup of functional groups, symmetry perfection, nanosize, and internal cavities. They can also be targeted to the tumor site in a magnetic field. The aim of this study is to obtain an effective targeted delivery system for doxorubicin, using polyamidoamine (PAMAM) DcMNPs. Different generations (G2 , G3 , G4 , and G7 ) of PAMAM DcMNPs were synthesized. Doxorubicin loading, release, and stability efficiencies in these nanoparticles (NPs) were studied. The results showed that low-generation NPs obtained in this study have pH-sensitive drug release characteristics. G4 DcMNP, which releases most of the drug in lower pH, seems to be the most suitable generation for efficient Doxorubicin delivery. Furthermore, application of doxorubicin-loaded G4 DcMNPs may help to overcome doxorubicin resistance in MCF-7 cells. On the contrary, G2 and G3 DcMNPs would be suitable for the delivery of drugs such as vinca alkaloids (Johnson IS, Armstrong JG, Gorman M, Burnett JP. 1963. Cancer Res 23:1390-1427.) and taxenes (Clarke SJ, Rivory LP. 1999. Clin Pharmacokinet 36(2):99-114.), which show their effects in cytoplasm. The results of this study can provide new insights in the development of pH-sensitive targeted drug delivery systems to overcome drug resistance during cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.