Abstract

In order to develop the efficiency and the specificity of anticancer drug delivery, we have designed an innovative nanocarrier. The nanocarrier system comprises of a multifunctional graphene oxide nanoparticle-based drug delivery system (GO-CS-M-DOX) as a novel platform for intracellular drug delivery of doxorubicin (DOX). Firstly, graphene oxide (GO) was synthesized by hummer’s method whose surface was functionalized by chitosan (CS) in order to obtain a more precise drug delivery, the system was then decorated with mannose (M). Further conjugation of an anti-cancer drug doxorubicin to the nanocarrier system resulted in GO-CS-M-DOX drug delivery system. The resultant conjugate was characterized for its physio-chemical properties and its biocompatibility was evaluated via hemolysis assay. The drug entrapment efficiency is as high as 90% and in vitro release studies of DOX under pH 5.3 is significantly higher than that under pH 7.4. The anticancer activity of the synthesized drug delivery system was studied by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay against MCF-7 cell line. These results stated that the pH dependent multifunctional doxorubicin- chitosan functionalized graphene oxide based nanocarrier system, could lead to a promising and potential platform for intracellular delivery and cytotoxicity activity for variety of anticancer drugs. 

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call