Abstract

The clinical efficacy of the antitumor antibiotic drug doxorubicin (DOX) is severely limited by its dose-limiting cardiotoxicity in cancer patients. DOX-induced generation of reactive oxygen species was proposed to be a major mechanism of its cardiotoxicity. Previously, we showed that DOX undergoes a reductive activation at the reductase domain of endothelial nitric-oxide synthase (eNOS) forming the semiquinone and superoxide (Vásquez-Vivar, J., Martasek, P., Hogg, N., Masters, B. S. S., Pritchard, K. A., Jr., and Kalyanaraman, B. (1997) Biochemistry 36, 11293-11297). In this report, we provide evidence for DOX-induced increase in eNOS transcription and protein expression in bovine aortic endothelial cells (BAEC). We propose that DOX-induced hydrogen peroxide formation is responsible for the increased transcription of eNOS. BAEC treated with antisense eNOS oligonucleotide inhibits DOX-induced endothelial apoptosis. Treatment with antioxidants restored the levels of antiapoptotic proteins (Hsp70 and Bcl-2) in DOX-treated BAEC. DOX-induced intracellular oxidative stress, as measured by oxidation of dichlorodihydrofluorescein diacetate to dichlorofluorescein and hydroethidium to ethidium, was inhibited by antisense eNOS oligonucleotide and antioxidant treatment. Furthermore, antiapoptotic antioxidants (e.g. FeTBAP, ebselen, and alpha-phenyl-tert-butyl nitrone) inhibited DOX-induced eNOS transcription. We conclude that DOX-induced apoptosis is linked to the redox activation of DOX by eNOS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.