Abstract

Described here is an anticancer material based on colloidal mesoporous silica nanoparticles (MSNs) functionalized with doxorubicin (DOX), and incorporated into Pluronic F127 hydrogels for prolonged release, with a potential therapeutic application for prostate cancer treatment. The MSNs have spherical morphology, size of about 60 nm, surface area of 970 cm2 g-1 and average pore width of 2.0 nm. A high colloidal stability for the MSNs in the physiological medium used for in vivo administration (NaCl 0.9% w/v) could be attained in the presence of PF127 (from 5 to 18 wt %), where depletion repulsion forces prevent MSN agglomeration. By conjugating DOX, MSN and PF127 (18 wt %) in NaCl 0.9%, the hybrid system has a gelation temperature of 21 °C, which allowed its in vivo administration in the liquid form and further in situ gelation, generating a drug depot system inside the animals after peritoneal injection. The systems were tested in rats with chemically induced prostate cancer and, after this treatment, histopathological analyses confirmed (i) a reduction in the frequency of aggressive tumors; (ii) that the antitumor effect was dependent on MSN concentration; and most importantly (iii) the reduction of DOX intrinsic cardiotoxicity, indicating that the MSNs play a cardioprotective effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call