Abstract

Recent observations in the Sea of Japan show evidence of convection to a depth of roughly 1000 m in the winter of 2000, situated along the polar front. Numerical simulations have shown that this deep mixing is associated with both ageostrophic frontal circulations and pre-existing larger-scale downwelling regimes. The downwelling regimes appear to be a result of interactions between frontal meandering and deep circulation in this basin over bottom topography anomalies. The coupling between the frontal dynamics and the deep circulation are explored by analogy to atmospheric frontal circulations through the semigeostrophic Sawyer–Eliassen equation, solved numerically for the case of the Sea of Japan. As in the atmospheric case, a vertical coupling between the upper and lower circulations can produce a localized region of downwelling that can be conducive to deeper mixing than that forced solely from surface fluxes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call