Abstract

We develop a theory of downward subsets of the space \R I, where I is a finite index set. Downward sets arise as the set of all solutions of a system of inequalities x∈\R I, ft(x)≤0 (t∈T), where T is an arbitrary index set and each ft (t∈T) is an increasing function defined on \R I. These sets play an important role in some parts of mathematical economics and game theory. We examine some functions related to a downward set (the distance to this set and the plus-Minkowski gauge of this set, which we introduce here) and study lattices of closed downward sets and of corresponding distance functions. We discuss two kinds of duality for downward sets, based on multiplicative and additive min-type functions, respectively, and corresponding separation properties, and we give some characterizations of best approximations by downward sets. Some links between the multiplicative and additive cases are established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.