Abstract
An innovative microfluidic platform was designed to monitor electrochemically four primary reactive oxygen (ROS) and reactive nitrogen species (RNS) released by aerobic cells. Taking advantage of the space confinement and electrode performances under flow conditions, only a few experiments were sufficient to directly provide significant statistical data relative to the average behavior of cells during oxidative-stress bursts. The microfluidic platform comprised an upstream microchamber for cell culture and four parallel microchannels located downstream for separately detecting H2O2, ONOO-, NO·, and NO2-. Amperometric measurements were performed at highly sensitive Pt-black electrodes implemented in the microchannels. RAW 264.7 macrophage secretions triggered by a calcium ionophore were used as a way to assess the performance, sensitivity, and specificity of the integrated microfluidic device. In comparison with some previous evaluations achieved from single-cell measurements, reproducible and relevant determinations validated the proof of concept of this microfluidic platform for analyzing statistically significant oxidative-stress responses of various cell types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.