Abstract

An atmospheric pressure nitrogen plasma jet sustained by a repetitive pulsed DC power source is studied. The afterglow characteristics of this plasma jet are studied by an optical emission spectrometer and thermocouples. The effects of the process parameters, namely the applied voltage and the gas flow rate, on the plasma characteristics are investigated. It is shown that the plasma reactivity is controlled by the power deposition to the plasma as well as the decay process of the reactive species upon formation. The reactivity increases with the increase in the applied voltage and with the decrease in the gas flow rate. The jet temperature is primarily controlled by the power density, and it increases with the increase in the applied voltage and with the decrease in the gas flow rate. These observations suggest that the plasma reactivity and the jet temperature of this plasma jet can be nearly independently controlled.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call