Abstract
The spectral characteristics and the structural response of a swirling flowfield are investigated subject to a non-axisymmetric disturbance and a contraction imposed downstream. Two natural frequencies are noted in different regions of the undisturbed swirling flowfield, one is due to a precessing vortex core and the other to the most amplified downstream azimuthal instability. The downstream contraction usually causes compression of the central recirculation zone into two side-lobes, increases the dominant frequencies and forms a straight central vortex core with a high axial velocity. The dominant downstream instability frequency depends linearly on the inlet Reynolds number and on the mode of the breakdown. For the downstream non-axisymmetric disturbance, such as the passing of the turbine blades, the fundamental frequency is not altered by the disturbance and the oscillation strength of the downstream instability is greatly reduced as the excitation frequency remains unmatched with the dominant downstream natural frequency. Downstream azimuthal instability promotes the breakdown recirculation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.