Abstract

The number of down-steps between pairs of up-steps in $k_t$-Dyck paths, a generalization of Dyck paths consisting of steps $\{(1, k), (1, -1)\}$ such that the path stays (weakly) above the line $y=-t$, is studied. Results are proved bijectively and by means of generating functions, and lead to several interesting identities as well as links to other combinatorial structures. In particular, there is a connection between $k_t$-Dyck paths and perforation patterns for punctured convolutional codes (binary matrices) used in coding theory. Surprisingly, upon restriction to usual Dyck paths this yields a new combinatorial interpretation of Catalan numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.