Abstract

ABSTRACTLand surface temperature (LST) is a key parameter of great interest in many remote sensing applications. However, no single satellite system can produce thermal infrared (TIR) images at both high spatial and temporal resolution to retrieve LST. Various algorithms have been developed to enhance the spatial or temporal resolution of TIR data in the past decades. Among them, the Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT) model is one of the most widely used algorithms for fusing Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. To our knowledge, Visible Infrared Imaging Radiometer Suite (VIIRS) TIR data have not yet been used in thermal downscaling with Landsat-8 TIR data. This study aims to generate daily LST images at Landsat-8 resolution (100 m) by fusing VIIRS and Landsat-8 TIR data for the first time with the SADFAT algorithm. The results indicate that the prediction accuracy for the study area ranged from 1.1 K to 1.4 K, which suggests that VIIRS data can be used as a good alternative for MODIS data for generating daily LST images by fusing Landsat TIR data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.