Abstract

Humidity is important to climate impacts in hydrology, agriculture, ecology, energy demand, and human health and comfort. Nonetheless humidity is not available in some widely-used archives of statistically downscaled climate projections for the western U.S. In this work the Localized Constructed Analogs (LOCA) statistical downscaling method is used to downscale specific humidity to a 1°/16° grid over the conterminous U.S. and the results compared to observations. LOCA reproduces observed monthly climatological values with a mean error of ~0.5 % and RMS error of ~2 %. Extreme (1-day in 1- and 20-years) maximum values (relevant to human health and energy demand) are within ~5 % of observed, while extreme minimum values (relevant to agriculture and wildfire) are within ~15 %. The asymmetry between extreme maximum and minimum errors is largely due to residual errors in the bias correction of extreme minimum values. The temporal standard deviations of downscaled daily specific humidity values have a mean error of ~1 % and RMS error of ~3 %. LOCA increases spatial coherence in the final downscaled field by ~13 %, but the downscaled coherence depends on the spatial coherence in the data being downscaled, which is not addressed by bias correction. Temporal correlations between daily, monthly, and annual time series of the original and downscaled data typically yield values >0.98. LOCA captures the observed correlations between temperature and specific humidity even when the two are downscaled independently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.