Abstract
Downscaling global weather prediction model outputs to individual locations or local scales is a common practice for operational weather forecast in order to correct the model outputs at subgrid scales. This paper presents an empirical‐statistical downscaling method for precipitation prediction which uses a feed‐forward multilayer perceptron (MLP) neural network. The MLP architecture was optimized by considering physical bases that determine the circulation of atmospheric variables. Downscaled precipitation was then used as inputs to the super tank model (runoff model) for flood prediction. The case study was conducted for the Thu Bon River Basin, located in Central Vietnam. Study results showed that the precipitation predicted by MLP outperformed that directly obtained from model outputs or downscaled using multiple linear regression. Consequently, flood forecast based on the downscaled precipitation was very encouraging. It has demonstrated as a robust technology, simple to implement, reliable, and universal application for flood prediction through the combination of downscaling model and super tank model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.