Abstract

The mechanism responsible for the abrupt fall in myocardial contractile function following coronary artery obstruction is unknown. The "vascular collapse theory" hypothesizes that the fall in coronary perfusion pressure after coronary artery obstruction is responsible for contractile failure during early ischemia. To test the role of vascular collapse in downregulating myocardial contractile force at the onset of ischemia, coronary flow of isolated rat hearts was abruptly decreased by 50, 70, 85, and 100% of baseline, and subsequent changes in coronary perfusion pressure and ventricular function were recorded at 0.5-s intervals. At 1.5 s after flow reductions ranging from 50 to 100%, decreases in contractile function did not differ, although perfusion pressure varied significantly from 45 +/- 1 to 20 +/- 2 mmHg. When function fell to 50% of baseline, perfusion pressures ranged from 35 +/- 0.5 to 2.5 +/- 1 mmHg for flow reductions ranging from 50 to 100%. Identical contractile function at widely differing coronary perfusion pressures is incompatible with the vascular collapse theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.