Abstract

Manganese (Mn) is an essential trace element. However, exposure to excessive Mn may cause neurodegenerative disorders called manganism. Accumulating evidence indicated that dysregulation of Wnt/β-catenin signaling was tightly associated with the onset of neurodegenerative disorders. However, whether aberrant Wnt/β-catenin signaling contributes to Mn-induced neurotoxicity remains unknown. The present study investigates the involvement of Wnt/β-catenin signaling in Mn-induced neurotoxicity. Western blot and immunohistochemistry analyses showed a remarkable downregulation of p-Ser9-glycogen synthase kinase-3β (GSK-3β) and β-catenin in rat striatum after Mn exposure. TUNEL assay revealed significant neuronal apoptosis following treatment with 25 mg/kg Mn. Immunofluorescent staining showed that β-catenin was expressed predominantly in neurons, and colocalization of β-catenin and active caspase-3 was observed after Mn exposure. Furthermore, Mn exposure resulted in PC12 cells apoptosis, which was accompanied by reduced levels of cellular β-catenin and p-GSK-3β. Accordingly, the mRNA level of the prosurvival factor survivin, a downstream target gene of β-catenin, was synchronously decreased. More importantly, blockage of GSK-3β activity with the GSK-3β inhibitor lithium chloride could attenuate Mn-induced downregulation of β-catenin and survivin as well as neuronal apoptosis. Overall, the present study demonstrates that downregulation of Wnt/β-catenin signaling pathway may be of vital importance in the neuropathological process of Mn-induced neurotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call