Abstract

BackgroundThe small GTPase Ran, Ras-related nuclear protein, plays important roles in multiple fundamental cellular functions such as nucleocytoplasmic transport, mitotic spindle assembly, and nuclear envelope formation, by binding to either GTP or GDP as a molecular switch. Although it has been clinically demonstrated that Ran is highly expressed in multiple types of cancer cells and specimens, the physiological significance of Ran expression levels is unknown. MethodsDuring the long-term culture of normal mammalian cells, we found that the endogenous Ran level gradually reduced in a passage-dependent manner. To examine the physiological significance of Ran reduction, we first performed small interfering RNA (siRNA)-mediated abrogation of Ran in human diploid fibroblasts. ResultsRan-depleted cells showed several senescent phenotypes. Furthermore, we found that nuclear accumulation of importin α, which was also observed in cells treated with siRNA against CAS, a specific export factor for importin α, occurred in the Ran-depleted cells before the cells showed senescent phenotypes. Further, the CAS-depleted cells also exhibited cellular senescence. Indeed, importin α showed predominant nuclear localisation in a passage-dependent manner. ConclusionsReduction in Ran levels causes cytoplasmic decrease and nuclear accumulation of importin α leading to cellular senescence in normal cells. General significanceThe amount of intracellular Ran may be critically related to cell fate determination, such as malignant transformation and senescence. The cellular ageing process may proceed through gradual regression of Ran-dependent nucleocytoplasmic transport competency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.