Abstract
Pseudomonas exotoxin (PE)-containing immunotoxins (ITs) act by arresting protein synthesis and promoting apoptosis, but the mechanisms of the induced apoptosis and the relationship to protein synthesis inhibition is not well elucidated. We studied these effects in MA-11 human breast cancer cells treated with 425.3PE, an unmodified PE covalently linked to the 425.3 antibody, which targets the EGF receptor. This IT induced efficient inhibition of protein synthesis with simultaneous induction of apoptosis. Thus, treatment of cells with 10 ng/ml of IT for 5 hr caused 85% inhibition of protein synthesis in parallel with caspase-3, -8 and -9 activation and PARP inactivation. Even after 72 hr of IT treatment, preincubation with the broad-spectrum caspase inhibitor z-VAD-FMK caused a significant increase in cell survival without affecting IT-induced protein synthesis inhibition. Interestingly, a combination of z-VAD-FMK and the cathepsin B/L inhibitor z-FA-FMK prevented completely IT-induced cell death in MA-11 cells after 24 hr, indicating that cathepsin activation may be important for optimal induction of IT-induced cell death. IT treatment caused after 2.5 hr a significant decrease in the level of the antiapoptotic protein Mcl-1 but not of Bcl-2 and Bcl-XL. Furthermore, Mcl-1 expression was not sensitive to caspase inhibitors but was totally prevented by the lactacystin proteasome inhibitor, suggesting that IT-induced apoptosis may be triggered by a reduction in the Mcl-1 level. Mitochondrial membrane potential (DeltaPsi mito) decreased concurrently with caspase activation, showing the involvement of DeltaPsi mito as a regulator of IT-induced apoptosis. Our results demonstrate that 425.3PE-mediated cell death involves simultaneous induction of apoptosis and protein synthesis inhibition in MA-11 cells, thus contributing to an understanding of the mechanisms involved in IT-induced apoptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.