Abstract

Gestational diabetes mellitus is one of the causes of abnormal embryonic heart development, but the mechanism is still poor. This study investigated the regulatory mechanism and role of SOX11 in congenital heart abnormality in a hyperglycemic environment. Immunohistochemistry, Western blotting, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) showed decreased SOX11 protein and messenger RNA (mRNA) levels in the heart tissue of diabetic offspring compared with the control group. A Sequenom EpiTYPER MassArray showed that methylation sites upstream in SOX11 region 1 were increased in the diabetic group compared with the control group. Luciferase reporter assays and qRT-PCR showed that Dnmt3b overexpression decreased SOX11 promoter activity and its mRNA level, whereas Dnmt3a had little effect on regulating SOX11 expression. Furthermore, we found that Dnmt3L cooperated with Dnmt3b to regulate SOX11 gene expression. Additionally, the function of SOX11 silencing was analyzed by using small interfering RNA-mediated knockdown. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and apoptotic assays showed that SOX11 downregulation inhibited cell viability and induced apoptosis in cardiomyocytes. Overexpression of the SOX11 gene suppressed cardiomyocytes apoptosis after high glucose treatment. We identified a novel epigenetic regulatory mechanism of SOX11 during heart development in a hyperglycemic environment and revealed a distinct role of SOX11 in mediating cardiomyocytes viability and apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call