Abstract
Increases in growth temperature have been observed to affect photosynthesis differently under long-term exposure to ambient- and twice ambient-air CO2 concentrations. This study investigates the causes of this interaction in wheat (Triticum aestivum L.) grown in the field over two consecutive years under temperature gradient chambers in ambient (370 μmol mol−1) or elevated (700 μmol mol−1) atmospheric CO2 concentrations and at ambient or ambient +4°C temperatures, with either a low or a high nitrogen supply. The photosynthesis-internal CO2 response curves and the activity, activation state, kcat and amount of Ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) were measured, as well as the soluble protein concentration in flag leaves at ear emergence and 8–15 days after anthesis. A high nitrogen supply increased Vcmax, the Rubisco amount and activity and soluble protein contents, but did not significantly change the Rubisco kcat. Both elevated CO2 and above ambient temperatures had negative effects on Vcmax and Rubisco activity, but at elevated CO2, an increase in temperature did not decrease Vcmax or Rubisco activity in relation to ambient temperature. The amounts of Rubisco and soluble protein decreased with elevated CO2 and temperature. The negative impact of elevated CO2 on Rubisco properties was somewhat counteracted at elevated temperatures by an increase in kcat. This effect can diminish the detrimental effects on photosynthesis of combined increases of CO2 and temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.