Abstract

Silicon (Si) is a ubiquitous element in soil with well-known beneficial effects under certain conditions, in several plant species, if supplied in available form for uptake. It may alleviate damage in various stress situations and may also promote growth when no obvious stressors are applied. Effects of Si are often linked to mitigation of oxidative stress, in particular to the induction of antioxidant defense mechanisms. In the work presented, the impact of silicon provision on pro-oxidant systems was investigated in cucumber. Plants of the F1 cultivar hybrid ‘Joker’ were grown under in vitro conditions in the absence of any applied external stressor. Silicon provision decreased H2O2 content and lowered lipid peroxidation in the leaves of the treated plants. This was paralleled by declining polyamine oxidase (PAO) and diamine oxidase (DAO) activities. Several PAO as well as lipoxygenase (LOX) genes were coordinately downregulated in Si-treated plants. Unlike in similar systems studied earlier, the Si effect was not associated with an increased transcript level of gene coding for antioxidant enzymes. These results suggest an inhibitory effect of Si provision on pro-oxidant amine oxidases, which may decrease the level of reactive oxygen species by retarding their production. This extends the molecular mechanisms linked to silicon effects onto redox balance in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.