Abstract

ObjectivePin1 is prevalently overexpressed in human cancers and implicated to regulate cell growth and apoptosis. Thus far, however, no role for Pin1 has been described in modulating vascular smooth muscle cell (VSMC) senescence. MethodsImmunohistochemistry and Western blotting were used to assess Pin1 protein level in human normal and atherosclerotic tissues. β-galactosidase staining, cumulative population doubling level, telomerase activity, and relative telomere length measurement were used to confirm VSMC senescence. The expressions of Pin1 and other genes involved in this research were analyzed by quantitative reverse-transcription polymerase chain reaction and Western blotting in VSMCs. Apolipoprotein E gene-deleted mice (ApoE−/−) fed a high-fat diet were treated with juglone or 10% ethanol, respectively, for 3 weeks. The extent of atherosclerosis was evaluated by Oil Red O, Masson trichrome staining, and immunohistology. ResultsPin1 protein level decreased in human atherosclerotic tissues and VSMCs, synchronously with increased VSMC senescence. Adenoviral-mediated Pin1 overexpression rescued cellular senescence in atherosclerotic VSMCs, with concurrent down-regulation of P53, p21, growth arrest and DNA-damage-inducible protein 45-alpha (Gadd45a), phosphorylated retinoblastoma (p-pRb), p65 and upregulation of cyclin subfamilies (cyclin B, D, and E), and cyclin-dependent kinase subfamilies (2, 4, and 6), whereas Pin1 knockdown resulted in the converse effects, indicating that VSMC senescence mediated by Pin1 is an integrated response to diverse signals. In vivo data from ApoE−/− mice showed that treatment of juglone led to accelerated atherosclerosis development. ConclusionsAltogether this work supports a role for Pin1 as a vital modulator of VSMC senescence, thereby providing a novel target for regulation and control of atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.